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Abstract

Corticosteroids influence the development and function of the heart and its response to
injury and pressure overload via actions on glucocorticoid (GR) and mineralocorticoid (MR)
receptors. Systemic corticosteroid concentration depends largely on the activity of the
hypothalamic—pituitary—adrenal (HPA) axis, but glucocorticoid can also be regenerated from
intrinsically inert metabolites by the enzyme 11p-hydroxysteroid dehydrogenase type 1 (11p-
HSD1), selectively increasing glucocorticoid levels within cells and tissues. Extensive studies
have revealed the roles for glucocorticoid regeneration by 11p-HSD1 in liver, adipose, brain
and other tissues, but until recently, there has been little focus on the heart. This article
reviews the evidence for glucocorticoid metabolism by 118-HSD1 in the heart and for a role of
11p-HSD1 activity in determining the myocardial growth and physiological function. We also
consider the potential of 11p-HSD1 as a therapeutic target to enhance repair after myocardial
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infarction and to prevent the development of cardiac remodelling and heart failure.
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Introduction

The major physiological adrenocorticosteroid hor-
mones, glucocorticoids (cortisol in most animals and
corticosterone in rats and mice) and mineralocorticoids
(aldosterone) are vital for normal cardiovascular function.
They regulate blood pressure (Hunter & Bailey 2015) and
vascular tone (Ullian 1999, Dover et al. 2007, Hadoke et al.
2009), as well as heart rhythm and contractility (Lefer 1967,
1968, Penefsky & Kahn 1971, Ouvrard-Pascaud et al. 2005,
Cruz-Topete et al. 2016). Under pathological conditions,
rapid corticosteroid release in response to hypothalamic-
pituitary—adrenal (HPA) axis activation is an early response
to cardiovascular insult, including after myocardial
infarction (MI). In the acute period, post-MI corticosteroids

are cardioprotective and suppress the early inflammatory
response to injury (Libby et al. 1973, Skyschally et al.
2004). However, sustained excessive glucocorticoid release
from the adrenals, for example in Cushing’s syndrome, is
associated with detrimental cardiac outcomes, including
myocardial ischaemia and hypertrophy, and in rare cases,
with loss of cardiomyocytes and dilated cardiomyopathy
(Peppa et al. 2009, Shibusawa et al. 2015, Frustaci et al.
2016). Chronic stress associates with cardiovascular disease
(Kumari etal. 2011), as does pharmacological glucocorticoid
treatment (Wei et al. 2004, Souverein et al. 2004).
Corticosteroids influence cell behaviour primarily
through the intracellular activation of glucocorticoid
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(GR) and mineralocorticoid (MR) receptors. In the heart,
activation of both GR and MR has an impact on cardiac
development, physiology and pathophysiology (reviewed
in Oakley & Cidlowski 2015 and Richardson et al. 2016). GR
and MR are highly related and belong to the nuclear receptor
family of transcriptional regulators (Biddie et al. 2010),
although some corticosteroid actions may be mediated
by non-classical signalling through cell-surface receptors
(Mihailidou & Funder 2005, Samarasinghe et al. 2012). The
GR binds glucocorticoids with 10- to 30-fold lower affinity
than the MR, but is relatively selective for glucocorticoid
compared with mineralocorticoid binding (Mihailidou &
Funder 2005, Samarasinghe et al. 2012). The MR has high
affinity for both mineralocorticoids and glucocorticoids,
but as glucocorticoids typically circulate at levels 100-fold
higher than those of mineralocorticoids, the MR is likely to
be constitutively occupied by glucocorticoids even at daily
nadir levels. Downstream signalling may differ depending
on which ligand occupies the receptor and, depending
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on prevailing conditions, glucocorticoids can behave as
agonists or antagonists at the MR (reviewed in Funder
2012). Access of mineralocorticoids to the MR depends
on specific mechanisms that regulate the intracellular
availability of adrenocorticosteroid hormones (Funder
et al. 1988). These include the extent of protein binding in
the plasma and in the heart itself (Bolton et al. 2014, Schafer
et al. 2015) and the activity of transporters that actively
extrude steroids from the cell. However, glucocorticoids
also undergo intracellular metabolism, and the capacity of
individual cells to metabolise glucocorticoids is a critical
factor in determining the extent (and indeed selectivity)
of MR and GR activation (Funder et al. 1988, Odermatt &
Kratschmar 2012, Chapman et al. 2013a).

11p-HSD enzymes

11p-hydroxysteroid dehydrogenase (11p-HSD) catalyses
the intracellular interconversion of the glucocorticoids
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Adrenocorticosteroids, 11p-HSD1 and the heart. Hypothalamic—pituitary—adrenal (HPA) axis-derived glucocorticoids (cortisol in man, corticosterone in
rats and mice) and the mineralocorticoid — aldosterone — compete for binding to cardiac glucocorticoid (GR) and mineralocorticoid receptors (MR).
Glucocorticoids are also regenerated within the heart from circulating inert metabolites (cortisone in man and 11-dehydrocorticosterone (11-DHC) in
rats and mice) by 11p-hydroxysteroid dehydrogenase type 1 (118-HSD1), when it is expressed alongside hexose-6-phosphate dehydrogenase (H6PDH).
As the glucocorticoid concentration ([cort]) normally far exceeds that of aldosterone ([aldo]), GR and MR are usually occupied by glucocorticoids.
11p-hydroxysteroid dehydrogenase type 2 (118-HSD2) inactivates glucocorticoids, but unlike other MR target tissues, there is normally little or no

dehydrogenase activity in the heart. Inactivation of glucocorticoids by 11p-HSD2 activity elsewhere in the body, largely in the kidney, generates the inert
precursors that, on entering the circulation, become available for glucocorticoid regeneration and GR/MR activation in cells that express 11p-HSD1.

In the healthy heart, 11p-HSD1 immunoreactivity (inset panel) is localised to vascular smooth muscle (VSM), fibroblasts (F) and also cardiomyocytes (CM)
in a fixed section from mouse left ventricle. The 11p-HSD1 antibody is a sheep anti-mouse polyclonal generated in house (De Sousa Peixoto et al. 2008).
Staining is notably absent in endothelial cells (EC) lining the vascular wall. A negative control of the same section generated using sheep IgG is shown in
the inset panel. From S J McSweeney, PhD thesis, 2010 (McSweeney 2010). 11p-HSD1 expression can be increased by glucocorticoids, by pro-inflammatory
Cytokines and in ageing in other tissues and this is also likely to be the case in the heart.

© 2017 The authors
Printed in Great Britain

http://jme.endocrinology-journals.org Published by Bioscientifica Ltd.

DOI: 10.1530/JME-16-0128


http://dx.doi.org/10.1530/JME-16-0128

Journal of Molecular Endocrinology

m G A GrRAY and others 115-HSD1 and the heart 58:1 R3

cortisol and corticosterone with their inert 11-keto forms
(cortisone and 11-dehydrocorticosterone (11-DHC),
respectively). 118-HSD type 2 (11p-HSD2) is a high-
affinity (nanomolar KM), low-capacity NAD-dependent
dehydrogenase (Albiston et al. 1994, Brown et al. 1996)
that inactivates the glucocorticoids (Fig. 1). 11p-HSD1
shares less than 30% homology with 118-HSD2 (Lakshmi
& Monder 1988, Agarwal et al. 1989) and is more widely
distributed than 118-HSD2. Under normal conditions, it
is co-expressed at the luminal border of the endoplasmic
reticulum alongside hexose-6-phosphate dehydrogenase
(Ho6PDH) (Atanasov et al. 2008) that provides the
co-substrate NADPH (Bujalska et al. 2005). This drives
the oxo-reductase activity of 11B-HSD1, re-activating
the glucocorticoids (Atanasov et al. 2004, Bujalska
et al. 2005, Lavery et al. 2006, Chapman et al. 2013a)
(Fig. 1). 11p-HSD1 has low affinity for glucocorticoids
(micromolar KM) relative to 11p-HSD2, but where H6PDH
is genetically deleted (Lavery et al. 2006) or where cells
are disrupted so that NADPH cannot be generated in close
proximity to 11p-HSD1, it switches from predominantly
oxo-reductase to dehydrogenase activity and this
inactivates rather than regenerates glucocorticoids
(Atanasov et al. 2004). Activity of 11p-HSD1 (largely in the
liver) and 11B-HSD2 (largely in the kidney) determines
active and keto-isoform concentrations in the systemic
circulation, but the variability in the activity of 11p-HSD
enzymes at the level of target cells adds a cell-specific
dimension to the control of steroid action (Chapman
etal. 2013a). To date, there has been relatively little focus
on the capacity of the myocardium or of its component
cells to metabolise corticosteroids.

11-HSD2 and MR activation in the heart

In mineralocorticoid target tissues, 11p-HSD2 is expressed
alongside the MR, where its activity reduces the availability
of glucocorticoid, permitting aldosterone to compete for
binding to the MR (Edwards et al. 1988, Funder et al. 1988).
The clinical efficacy of MR antagonists after MI (Pitt et al.
2003) and in heart failure (Pitt et al. 1999, Zannad et al.
2011, 2012) are attributed, at least in part, to blockade of
MR activation in the heart. A recent preclinical study in
adrenalectomised rats has shown that mineralocorticoids
regulate cardiac electrical function through the activation
of MR (Cruz-Topete et al. 2016). However, the weight
of evidence suggests that there is normally little or no
118-HSD2 activity in the heart (Walker et al. 1991,
Whorwood et al. 1992), except perhaps in vascular
endothelium (Walker et al. 1991, Smith et al. 1996). This

was confirmed in a recent in vivo study on patients under-
going diagnostic coronary angiography that failed to find
any evidence for inactivation of the stable isotope tracer
9,11,12,12-[2H]4-cortisol across the human heart (Igbal
et al. 2014). Furthermore, infusion of the MR antagonist
canrenoate in the same patients resulted in the elevation
of cortisol collected from the coronary sinus. These data
support the view that the cardiac MR is normally occupied
by glucocorticoid, rather than by aldosterone. However,
this situation may change in pathological conditions,
including hypoxia (Klusonova et al. 2009), in which there
is evidence for enhancement of 118-HSD2 activity and
expression (Chai et al. 2010, Chapman et al. 2013a), that
may allow aldosterone to compete for binding to the MR.
Selective overexpression of 11p-HSD2 in cardiomyocytes
leads to MR-dependent hypertrophy and fibrosis in mice
(Qin et al. 2003), showing potential for a role in cardiac
pathology. Global 11p-HSD2 knockout mice have cardiac
hypertrophy and fibrosis but, as these mice are also
hypertensive (Kotelevtsev et al. 1999), any phenotype
that is specifically due to lack of 118-HSD2 in the heart
has proved impossible to dissect. Generation of mice
with targeted 11p-HSD2 deletion in cardiomyocytes and
other cardiac cells would provide a more definitive answer
regarding the role of dehydrogenase activity in cardiac
physiology and pathology.

Glucocorticoid regeneration by 11-HSD1 in
the heart

118-HSD1 is more widely expressed in the body than
118-HSD2, but tissue expression of 11p-HSD1 is often
reported to be low. This is also the case in the heart or at
leastin whole ventricular homogenates (Walker et al. 1991,
White et al. 2016). However, immunoreactive 11p-HSD1
can be localised to cardiomyocytes, to interstitial and
adventitial fibroblasts (Brereton et al. 2001) and to vascular
smooth muscle in murine heart (Fig. 1) (McSweeney
2010). We have found that targeted deletion of 118-HSD1
in cardiomyocytes and vascular smooth muscle cells leads
to a significant reduction in Hsd11b1 gene expression
in the mouse heart, confirming its expression in these
cells (White et al. 2016). Although endothelial cells in
culture are reported to have 11p-HSD1 activity (Brem
et al. 1998), previous studies have concluded that the
118-HSD enzyme in aortic endothelial cells is primarily
a dehydrogenase, with oxo-reductase activity limited to
the smooth muscle cell compartment of the vascular wall
(Walker et al. 1991, Dover et al. 2007). Immunostaining
suggests that this is also the case in the coronary vessels
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(Fig. 1). Fibroblasts are among the most abundant cells
in the heart, and transcriptomic analysis has revealed
that expression of Hsd11b1 is high in cardiac fibroblasts
relative to fibroblasts elsewhere in the body (Furtado et al.
2014), consistent with a potentially important role here.
Myocardial expression of H6PDH (Brereton
et al. 2001, Gomez-Sanchez et al. 2008), and H6PDH
immunoreactivity in cells identified as fibrocytes (Gomez-
Sanchez et al. 2008), suggests that NADPH will be
available to support oxo-reductase activity in the heart.
However, conversion of 11-DHC to corticosterone is
comparatively low in whole ventricular homogenate from
mice and rats (Walker et al. 1991, Sheppard & Autelitano
2002). Similarly, although HSDI11B1 mRNA is present in
human heart (Chai et al. 2010), cortisol is not significantly
regenerated from cortisone infused in vivo into the hearts of
patients undergoing elective coronary angiography (Igbal
et al. 2014). Thus, although there is plentiful evidence
that myocardial cells express 11p-HSD1, reactivation of
glucocorticoid is apparently limited under physiological
conditions. Nevertheless, our phenotyping studies in
mice with genetically induced 11p-HSD1 deficiency show
that 11p-HSD1 activity has a role in determining normal

hearts was significantly less than that isolated
from control wild-type hearts (black).*P<0.05,
***p<0.005, n=5-8.

postnatal growth of the heart (Fig. 2 and below), as well as
Ca?+ handling and diastolic function (White 2016).

11p-HSD1 in postnatal growth of
the myocardium

GR activation during a prenatal surge in plasma
glucocorticoid is essential for the structural and functional
maturation of the heart before birth (Rog-Zielinska et al.
2014, 2015), and consequently, genetic deletion of GR
from the heart and smooth muscle results in increased
perinatal mortality (Rog-Zielinska et al. 2013, 2014).
11B-HSD1 is not expressed to any extent in the mouse
heart in the prenatal period (Speirs et al. 2004), and
neither global (Kotelevtsev et al. 1997) nor cardiomyocyte
and vascular smooth muscle cell-specific (White et al.
2016) deletion of Hsd11b1 has any influence on perinatal
mortality. However, a role for 11p-HSD1 in the maturation
of the postnatal heart is indicated by our observation that
hearts from adult mice with global deficiency of 118-HSD1
are smaller than those of wild-type mice (McSweeney
2010, McSweeney et al. 2010; Fig. 2A). Cardiomyocyte
GR activation in the neonatal period promotes the switch
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from proliferative to hypertrophic growth (Richardson
et al. 2016). MR activation in the same period promotes
proliferation (Feng et al. 2013). Proliferative neonatal
cardiomyocytes can reactivate glucocorticoids through
118-HSD1 oxo-reductase activity during the period that
they retain proliferative capacity (Lister et al. 2006).
However, the hearts of globally 11p-HSD1-deficient mice
have normal ventricular dimensions from E18.5 to at least
P40 (Fig. 2B). Mice with targeted deletion of 118-HSD1
in cardiomyocytes and vascular smooth muscle also
have phenotypically normal hearts (White et al. 2016).
Therefore, loss of cardiomyocyte corticosteroid receptor
activation in the perinatal period does not account for the
smaller size of hearts in adult 11p-HSD1 mice. Interestin-
gly, further analysis revealed that although cardiomyocyte
cross-sectional area is normal in adult hearts of 113-HSD1-
deficient mice (Fig. 2C), cardiomyocyte length is reduced
(Fig. 2D; White 2016). Cardiomyocytes are influenced
by physical interactions and paracrine signalling from
other cells in their environment. Blood volume and blood
pressure are not modified in mice with global 11p-HSD1
deficiency, so altered in vivo haemodynamic stress is not
likely to underlie the reduction in cardiomyocyte length
(White 2016). Further investigation is required to find
whether the loss of 118-HSD1 in other myocardial cells,
for example, resident macrophages or fibroblasts can
indirectly influence cardiomyocyte size during postnatal
growth. In terms of clinical relevance, it is notable that
a single nucleotide polymorphism in the HSD11B1 gene
is also associated with reduced left ventricular mass
(Rahman et al. 2011), although the underlying mechanism
was not investigated.

11p-HSD1 and myocardial pathology

Although cellular 11p-HSD1 expression and activity may
normally be low in the heart, both can change rapidly
in response to external stimuli (reviewed in Chapman
et al. 2013b). Glucocorticoid itself promotes 113-HSD1
expression (Sai et al. 2008, Morgan et al. 2014), and there
is good evidence that 118-HSD1 is the major regulator
of the tissue-specific effects of circulating glucocorticoid
excess (Morgan et al. 2014). The pro-inflammatory
cytokines IL-1 and TNF-a are also key activators of
11B-HSD1 gene expression, notably in fibroblasts (Hardy
et al. 2006, Stegk et al. 2009, Ahasan et al. 2012, Chapman
et al. 2013b, Esteves et al. 2014). These cytokines can act
alone or synergistically with glucocorticoid (Kaur et al.
2010, Ahasanetal. 2012), toeffectanincrease in the capacity
for intracellular glucocorticoid regeneration by 11p-HSD1.
After trauma or injury, pro-inflammatory conditions that

potently increase HPA axis activity (and thereby plasma
11-DHC/cortisone levels (Harris et al. 2001)), increased
11B-HSD1 activity is likely to be a significant contributor
to intracellular glucocorticoid levels and thus GR and
MR activation. The generation of mice lacking 118-HSD1
(Kotelevtsev et al. 1997, Holmes et al. 2001) and more
recently, the development of specific 11p-HSD1 inhibitors
(Hughes et al. 2008, Wheelan et al. 2014, Sooy et al. 2015),
have provided the opportunity to identify such roles for
amplification of intracellular glucocorticoid signalling by
11p-HSD1 in cardiac pathophysiology.

118-HSD1, MI and heart failure

MI occurs most commonly after the formation of a
clot on a ruptured atherosclerotic plaque, leading to
ischaemic cardiomyocyte death in the area served by the
affected coronary artery. As the adult heart has only very
limited ability to regenerate, MI is followed by a period
of wound healing that results in the formation of a scar
to maintain myocardial integrity (Video 1; Frangogiannis
2014). The extent of cardiomyocyte loss during ischaemia
and expansion of injury during infarct repair are critical
determinants of subsequent structural remodelling and
functional deterioration leading to heart failure (Di Bella
et al. 2013).

Video 1

Coronal view of mouse heart collected 7 days after
induction of myocardial infarction and imaged by optical
projection tomography, as we have described in
(Zhao et al. 2015). Progressive optical sectioning through
the heart reveals the extensive, thinned infarct area of
the left ventricle. In 11p-HSD1 deficient mice the length of
the infarcted area is reduced and the ventricle wall is less
thinned (McSweeney et al. 2010, White 2016). View Video
1 at http://movie-usa.glencoesoftware.com/video/10.1530/
JME-16-0128/video-1

In a preclinical model of atherosclerosis in ApoE-
deficient mice, pharmacological inhibition (Hermanowski-
Vosatka et al. 2005), or genetic ablation (Garcia et al.
2013, Kipari et al. 2013), of 11p-HSD1 is associated with
reduction in plaque size independently of changes in
lipid availability. Plaque size reduction in ApoE/11p-
HSD1 double knockout mice was attributed to loss of
11B-HSD1 in bone marrow-derived cells (Kipari et al. 2013).
These cells are recruited to the arterial wall during plaque
formation, where they accumulate lipid and contribute
to the determination of plaque stability. Neutrophils,
monocyte/macrophages and T cells express 11p-HSD1
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(Zhang & Daynes 2007, Zhang et al. 2005), and expression
is increased during their mobilisation and activation
(reviewed in Chapman et al. 2013b).
generation of glucocorticoid in monocyte/macrophages
and neutrophils regulates their recruitment to sites of
inflammation (Tiganescu et al. 2011), phagocytic potential
(Speirs et al. 2004) and the release of pro-inflammatory
molecules (Zhang & Daynes 2007). 11p-HSD1 inhibition
may therefore be of therapeutic benefit in preventing the
development of complex plaques that are vulnerable to
rupture causing MI.

Mice with global deficiency of 11p-HSD1 also have
reduced structural and functional remodelling after MI,
induced by coronary artery ligation, and do not go on to
develop heart failure (McSweeney et al. 2010, White et al.
2016). Thus, 11p-HSD1 availability has an impact not
only on the development of coronary artery disease that
leads to MI but also on the response of the myocardium
after MI. Increased plasma corticosterone, derived from
HPA axis activation in the immediate post-infarct period,
reduces cardiomyocyte death and infarct size and there is
evidence supporting roles for both GR (Hafezi-Moghadam
etal.2002) and MR (Mihailidou et al. 2009, Fraccarollo et al.
2011)in determining this outcome. However,in 11p-HSD1-
deficient mice, plasma corticosterone is increased to the
same extent after MI as in wild-type mice and infarct
injury is unchanged (McSweeney et al. 2010). Therefore,
differences in the immediate response to MI do not
underlie the subsequent reduction in cardiac remodelling
in the absence of 11p-HSD1. However, peri-infarct

Intracellular

angiogenesis is enhanced in 11p-HSD1-deficient mice
during repair (Small et al. 2005), and this is associated
with reduced infarct expansion in this period and with
eventual scar size (McSweeney et al. 2010). Glucocorticoids
suppress angiogenesis, and prevention of intracellular
glucocorticoid regeneration in 11p-HSD1-deficient mice
promotes angiogenesis in different in vitro and in vivo
experimental models (Small et al. 2005). Smooth muscle
cells are the main site of intravascular 118-HSD1 activity
(Hadoke et al. 2013), but targeted deletion of Hsd11b1
in cardiomyocytes and vascular smooth muscle cells
failed to enhance angiogenesis or improve outcome after
MI (White et al. 2016). Engagement of extra-vascular
pro-angiogenic mechanisms is therefore indicated.
Increased angiogenesis in 11p-HSD1-deficient mice after
MI is preceded by increased content of reparative ‘M2’
macrophages during the proliferative phase of wound
healing (McSweeney et al. 2010). These ‘M2’ macrophages
are essential for infarct repair (Shiraishi et al. 2016) and
can release growth factors and pro-angiogenic mediators
that increase neovascularisation during wound healing,
as well as for promoting the formation of a mature
collagen scar. Enhancement of macrophage polarisation
in mice lacking 11p-HSD1 is therefore likely to be a key
mechanism underlying improved outcome after MI
(Fig. 3). Increased ‘M2’ polarisation of macrophages could
occur due to loss of 118-HSD1 in the inflammatory cells
themselves, as proposed in atherosclerosis (Kipari et al.
2013), resulting in the modification of inflammatory
cell recruitment and phenotype (Frangogiannis 2014).

Physiology Post-MI
cm vsme myofib
11p-HSDA N T cell ‘% Figure 3
expression 8 =3 Distribution and actions of 11-HSD1 in
s . physiology and post-Ml. In the healthy heart
neut mono (panel A), 118-HSD1 is expressed in
« fib 2 mac cardiomyocytes (cm), vascular smooth muscle
« ﬂ:‘ o . . (VSMC) and fibroblasts (fib). Deletion of
T | . 118-HSD1 (panel B) results in smaller adult hearts
A Cc and mild diastolic dysfunction (identified by
increased deceleration time on Doppler mitral
- B D g.g valve (MV) ultrasound). After Ml (panel C),
[V o X o 11p-HSD1 is additionally expressed in
o —> ] o . ) .
neut o0 ] RS myofibroblasts (myofib) and recruited
Phenotype of = ‘ inflammatory cells (T cells, neutrophils (neut),
Hsd11b1-- ‘J J monocyte (mono) and macrophages (mac)).
M1 M2 M2 11p-HSD1 deficiency after Ml (panel D) results in
mouse mac & . > . : ‘ increased early neutrophil (neut) recruitment,
Increased : increaser::l acquisitionhof pro-repailr M2
MV E wave macTop age (mac) phenotype, relative to
deceleration ) pro-inflammatory ‘M1’ macrophage phenotype
: . d increased angiogenesis, leading to increased
Angiogenesi an
time glogenesis vessel density.
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Macrophage MR knockout (Usher et al. 2010), or GR
activation (Gratchev et al. 2008), results in polarisation
towards an ‘M2’ phenotype, and MR antagonists increase
‘M2’ macrophage polarisation in the heart when given
after MI (Fraccarollo et al. 2008). Loss of glucocorticoid
regenerative capacity in macrophages could therefore
conceivably underlie changes in the activation status by
preventing the activation of MR. However, promotion of
peri-infarct angiogenesis after MI is enhanced when GR
is blocked (Small et al. 2005), supporting a more indirect
mechanism that involves GR, rather than MR activation.

Neutrophil recruitment is increased in the hearts
of 11p-HSD1-deficient mice after the induction of MI
(McSweeney et al. 2010) (Fig. 3). This results at least in
part from loss of 118-HSD1 in neutrophils themselves,
where its activity restrains recruitment to inflamed tissues
through modulation of adhesion molecule availability
at the cell surface (Cavalcanti et al. 2006, Tiganescu et al.
2011, Coutinho et al. 2016). Loss of 11p-HSD1 activity
in the heart itself is also likely to contribute. Expression
of neutrophil chemoattractants, including CXCLS5/LIX
(Smith & Herschman 1995), IL-6 (Hardy et al. 2006) and
CXCL2/MIP2a (Uhlenhaut et al. 2013) is repressed by
glucocorticoid, and these chemoattractants are expressed
by cells in the heart that express 11p-HSD1, including
fibroblasts. Mast cell degranulation after myocardial
injury also enhances neutrophil recruitment, and as
degranulation is increased in the absence of 118-HSD1
(Coutinho et al. 2013), these cells may also play a role in
increasing neutrophil recruitment in 11p-HSD1-deficient
mice. In the post-infarct heart, neutrophils phagocytose
necrotic myocytes and break down the intracellular
matrix during the initial inflammatory phase of repair.
However, they also promote the transition to resolution
by releasing gelatinase-associated lipocalin (Horckmans
et al. 2016). Efferocytosis, or macrophage engulfment of
apoptotic cells, including neutrophils (Wan et al. 2013),
will also enhance the acquisition of an ‘M2’ phenotype.
Early enhancement of neutrophil recruitment may thus
be an essential prerequisite for the promotion of repair in
the mice lacking 11p-HSD1.

Several lines of evidence point to cardiac fibroblasts,
particularly their high expression of 113-HSD1 (Furtado
et al. 2014), as a key site for intracellular regeneration
of glucocorticoid in the healing myocardial infarct
(Chen & Frangogiannis 2013). 11p-HSD1 activity in
stromal cells elsewhere, including synovial fibroblasts,
is promoted by the action of corticosteroids and
inflammatory mediators (Hardy et al. 2006, Ahasan
et al. 2012). In the skin, 11p-HSD1 is active in dermal

fibroblasts (Tiganescu et al. 2011) and global 11p-HSD1
knockout or pharmacological inhibition promotes skin
wound healing (Tiganescu et al. 2013). Fibroblasts are
abundant in the heart and have multiple potential roles
during myocardial inflammation and repair that follows
MI (Porter & Turner 2009). In addition to the production
of collagen and other matrix proteins that determine
scar integrity, they secrete molecules, including cyto-
kines, prostaglandins (Shinde & Frangogiannis 2014,
Fernando et al. 2015, Turner 2016) and microRNA
(Fang & Yeh 2015), capable of regulating inflammation
(Porter & Turner 2009, Chen & Frangogiannis 2013,
van Nieuwenhoven & Turner 2013), Treg recruitment
(Frangogiannis 2014), angiogenesis (Newman etal. 2011),
cardiogenesis (Furtado et al. 2014) and hypertrophy
(Abonnenc et al. 2013, Cartledge et al. 2015). The
role of cardiac fibroblast 11p-HSD1 in regulating the
cellular secretome and on the response to MI and other
pathological challenges merits further investigation.

Therapeutic potential of 11-HSD1 inhibition
in myocardial disease

Pharmacological inhibitors of 118-HSD1 have already been
developed for use in metabolic disease and for prevention
of cognitive decline (Anderson & Walker 2013, Sooy et al.
2015). Survival after MI is increasing, thanks to prompt
and efficient intervention to restore perfusion to the
ischaemic myocardium (BHF Heart Stats, 2015). However,
patients survive with damage to their myocardium
that spreads to the peri-infarct area during wound
healing. Thus, although the introduction of coronary
revascularisation has been associated with a reduction in
early post-MI deaths, there has been an increase in the
S-year incidence of HF (Velagaleti et al. 2008). Preclinical
data are highly supportive of the therapeutic potential of
11p-HSD1 inhibitors in the prevention of atherosclerosis
(Hermanowski-Vosatka et al. 2005, Garcia et al. 2013, Kipari
et al. 2013), as well as acutely following MI, to prevent
the infarct expansion that promotes the development of
heart failure (McSweeney et al. 2010, White et al. 2016).
Ventricular hypertrophy is a feature of the adaptive
ventricular remodelling that follows MI and in pressure
overload associated with hypertension. Gordon and
coworkers (2014) showed that an inhibitor of 11p-HSD1
was able to reverse established hypertrophy and associated
dysfunction in a mouse model of perfusion deficit-
induced cardiac remodelling. Interestingly, this outcome
was independent of any influence on neovascularisation
or perfusion. Inhibition of 11p-HSD1 may therefore

© 2017 The authors
Printed in Great Britain

http:/jme.endocrinology-journals.org
DOI: 10.1530/JME-16-0128

Published by Bioscientifica Ltd.


http://dx.doi.org/10.1530/JME-16-0128

Journal of Molecular Endocrinology

m G A GRAY and others 115-HSD1 and the heart 58:1 R8

have additional benefits on post-MI remodelling beyond
the prevention of infarct expansion. In clinical trials of
11B-HSD1 inhibitors in diabetes, improvement in blood
glucose and other metabolic end points failed to reach
significance when compared with existing therapies, but
the evidence for a modest benefit was highly consistent
(Anderson & Walker 2013). Such benefits in metabolic
outcomes are likely to be advantageous in patients with
cardiovascular disease. Together, these data demonstrate
the potential for ‘repurposing’ of 11p-HSD1 inhibitors
already developed for clinical use in other therapeutic
areas. None of the trials of these inhibitors in diabetes
have raised any question on the effectiveness of target
engagement or on toxicology. Improved understanding
of the cellular mechanisms through which 11p-HSD1
inactivation enhances angiogenesis prevents infarct
expansion, and adverse ventricular remodelling will help
to justify the clinical development of 118-HSD1 inhibitors
for MI therapy, as well as providing biomarkers to monitor
the effects of 11p-HSD1 inhibition.

MR antagonists are already used effectively in the
treatment of heart failure (Pittetal. 1999, Zannadetal. 2011,
2012), by preventing MR activation in cardiomyocytes
(Fraccarollo et al. 2011) and in macrophages (Fraccarollo
et al. 2008). Preclinical studies have revealed the potential
benefits of blocking GR in cardiovascular disease (Small
et al. 2005, Oakley & Cidlowski 2015, Richardson et al.
2016), but essential physiological roles of GR activation
preclude the use of GR antagonists in vivo. With their
distinct profile of action, 11p-HSD1 inhibitors offer an
alternative means of regulating GR and MR activation
in specific cells. 11p-HSD1 inhibitors might provide an
alternative to MR antagonists in patients who do not
tolerate the effects of MR antagonism on K+ handling
(Pitt et al. 2008). Alternatively, they may have additional
or complementary benefits when combined with MR
antagonists, and this should be tested in models of
cardiovascular disease.

In this review, we have considered 11p-HSD1 in the
context of its capacity for intracellular regeneration of
active glucocorticoids from inert metabolites. However,
118-HSD1 has other actions that may contribute to the
physiological and pathophysiological outcomes reported
previously. 118-HSD1 is a multifunctional carbonyl
reductase that also converts 11- and 7-oxosterols into the
respective 7-hydroxylated forms and also catalyses the
reduction of non-steroidal xenobiotics (Mitic et al. 2013b,
Odermatt & Klusonova 2015). Studies with selective
inhibitors and genetically modified mice provide further

evidence for the effects of 118-HSD1 in the regulation
of cellular cholesterol flux and on bile acid homeostasis
(Mitic et al. 2013a). Oxysterols influence vascular
function (Mitic et al. 2013a), and modulation of genes
involved in cellular cholesterol flux is associated with
disease severity in patients after MI (Suresh et al. 2014).
These mechanisms may therefore be engaged alongside
prevention of intracellular glucocorticoid regeneration
when 11p-HSD1 is genetically depleted or inhibited
and could contribute to any beneficial effects of drug
intervention in cardiovascular pathology.

Conclusion

Studies over the past three decades have demonstrated
roles for the 11p-HSD enzymes in metabolic, neurological
and inflammatory diseases, but roles in the heart have
been relatively unexplored. Recent studies have shown
that 11p-HSD1 is expressed in myocardial cells, including
notably cardiac fibroblasts. Global 118-HSD1 deficiency
has effects on cardiac growth and physiological function
that are more subtle than those associated with GR deletion
(Oakley & Cidlowski 2015, Richardson et al. 2016), or
adrenalectomy (Cruz-Topete et al. 2016), but nevertheless
of physiological relevance. Importantly, genetic or
pharmacological depletion of 11p-HSD1 also prevents
adverse cardiac remodelling and the development of heart
failure after MI (McSweeney et al. 2010, Gordon et al.
2014, White et al. 2016). In the skin, 11p-HSD1 expression
is increased during ageing (Tiganescu et al. 2011) and
11p-HSD1 inhibition prevents age-induced structural
defects (Tiganescu et al. 2013). If 11p-HSD1 expression
is similarly increased in the heart, the influence of
11B-HSD1 on myocardial physiology and pathophysiology
is likely to be even more pronounced in the aged heart.
Novel mass spectrometry imaging has recently permitted
accurate localisation of 118-HSD1 ‘intracrinology’ in
sections of mouse adrenal gland and brain (Cobice et al.
2013). Application of mass spectrometry imaging to the
heart will be of significant value to understand cellular
11B-HSD1 activity and how it is changed in ageing and
disease. Whether the key intracellular mechanisms of
11p-HSD1 are dependent or independent of glucocorti-
coid regeneration, preclinical studies have started to
reveal novel therapeutic potential for drugs that inhibit
11p-HSD1. Given that 118-HSD1 expression and activity
can be rapidly increased by inflammatory mediators
and by glucocorticoids, there are likely to be further
applications for these drugs in cardiovascular disease,
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as well as in preventing the deterioration of cardiac
function associated with chronic stress, Cushing’s
disease and glucocorticoid therapy (Souverein et al. 2004,
Wei et al. 2004, Peppa et al. 2009, Kumari et al. 2011,
Shibusawa et al. 2015, Frustaci et al. 2016).
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