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Abstract

Adherence of an embryo to the uterus represents the most critical step of the 

reproductive process. Implantation is a synchronized event between the blastocyst and 

the uterine luminal epithelium, leading to structural and functional changes for further 

embryonic growth and development. The milieu comprising the complex process of 

implantation is mediated by estrogen through diverse but interdependent signaling 

pathways. Mouse models have demonstrated the relevance of the expression of estrogen-

modulated paracrine factors to uterine receptivity and implantation window. More 

importantly, some factors seem to serve as molecular links between different estrogen 

pathways, promoting cell growth, acting as molecular chaperones, or amplifying 

estrogenic effects. Abnormal expression of these factors can lead to implantation 

failure and infertility. This review provides an overview of several well-characterized 

signaling pathways that elucidates the molecular cross talk involved in the uterus during 

early pregnancy.
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Introduction

Reproduction is a fundamental aspect of life. The World 
Health Organization (WHO) has recognized infertility, 
or the inability to reproduce, as a worldwide health 
concern with a lifetime prevalence ranging from 6.6 to 
26.4% (Boivin et al. 2007). Although much advancement 
has been made using assisted reproductive technologies 
(ARTs) to achieve higher pregnancy rates by improving 
the selection of high-quality embryos, the implantation 
process is still very illusive.

The development of the preimplantation embryo 
and the differentiation of the uterus are distinct processes 
occurring simultaneously in early gestation and must 
be synchronized in order for successful implantation 
(Psychoyos 1973a, Paria et al. 1993). It has been shown 

that in a mouse, implantation occurs when the devel-
oped blastocyst attaches to the luminal epithelium of the  
uterine endometrium on the evening of day 4 of pregnancy 
(Enders & Schlafke 1969, Das et  al. 1994). The attach-
ment of the embryo to the epithelial lining promotes the  
disappearance of epithelium. This depends on a mechanism  
of entosis (cell-eat-cell) by the trophoblast cells followed 
by apoptosis at the site of implantation (Parr et al. 1987, 
Li et al. 2015) and subsequent stimulation of stromal cell 
proliferation and differentiation into secretory decidual 
cells. This series of events form the decidualization bed at 
the blastocyst site (Huet-Hudson et al. 1989).

These structural and functional changes occurring in 
the uterus promote receptivity to the invading blastocyst. 
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This receptivity phase of the uterus is short-lived and pri-
marily mediated by estrogen and progesterone (Psychoyos 
1973a, Paria et  al. 1993). The estrogenic effects in the 
mouse uterus are biphasic: early (phase I) responses occur 
within 6  h and are characterized by water inhibition, 
macromolecular uptake, and alteration in genes involved 
in vascular permeability. Late (phase II) responses occur 
between 18 and 30 h and are characterized by increased 
epithelial cell proliferation (Huet-Hudson et al. 1989). The 
presence of progesterone (P4) is inhibitory to estrogen-
mediated epithelial proliferation, which can be detected 
on day 4 (D4) of gestation (Das & Martin 1973, Martin 
et al. 1973, Pan et al. 2006, Li et al. 2011). Ovariectomized 
mice on the morning of D4 before preimplantation estro-
gen secretion exhibit delayed implantation due to blasto-
cyst dormancy (Yoshinaga and Adams 1966). When the 
uterus in ovariectomized mice is exposed to progesterone 
alone, it renders it a neutral or pre-receptive endome-
trium; however, receptivity for implantation is observed 
when exposed to estrogen (Paria et al. 1993). This dem-
onstrates the crucial role of estrogen in the process of 
implantation.

The mechanisms by which estrogen transforms a  
progesterone-primed uterus to the receptive state, 
activates blastocysts, and initiates implantation are 
not clearly delineated. The classical estrogen signaling 
pathway is through nuclear estrogen receptors ERα 
(ESR1) and ERβ (ESR2), which act as ligand-inducible 
transcription factors (Tsai & O’Malley 1994, Beato et al.  
1995). However, there is increasing evidence that gene 
activation and cell function modulation are initiated  
by estrogen through a nuclear ER-independent manner.  
Studies with Erα-null mice and also wild-type mice,  
in which both ERα and ERβ antagonists ICI-182,780 
were used to silence ligand-dependent ER functions, 
have demonstrated estrogen-mediated gene expression, 
suggesting an alternate signaling pathway (Das et  al. 
1997, Das et al. 2000, Hou et al. 2004).

Implantation failure and infertility are associated with 
aberrations in molecular pathways. The knowledge attained 
with the development of knockout (KO) mouse models 
and conditional gene deletions has advanced uterine  
biology immensely. This is a review of the knowledge 
gained from previous studies on mice attempting to delin-
eate the mechanisms of estrogen signaling. Understanding 
the estrogen pathways and its mediated events during 
early pregnancy is critical to further advancement in ART 
protocols that will improve treatment of this worldwide 
health condition.

Role of estrogen receptors during early 
pregnancy

Estrogen plays a pivotal role in the observed changes of 
the uterus during early pregnancy. In mice, during the 
first 2 days of gestation, pre-ovulatory estrogen stimulates 
proliferation of the luminal and glandular epithelial 
cells (phase I estrogen secretion). Once the corpora lutea 
is formed on day  3 of gestation, progesterone secretion 
stimulates stromal cell proliferation, which becomes 
further potentiated by preimplantation estrogen (phase 
II estrogen secretion) on day 4, the day of implantation 
(Huet-Hudson et al. 1989). This second wave of estrogen 
before implantation ceases epithelial cell proliferation and 
allows for differentiation to occur (Tan et al. 1999). During 
the remodeling of the uterine epithelium, the epithelial 
cells lose polarity through downregulation of the cell-to-
cell adhesion molecule E-cadherin (Daikoku et al. 2011, Li 
et al. 2015). Epithelial cells also acquire inhibition of the 
glycoprotein mucin 1 (MUC1) and develop protrusions 
along the apical surface (Surveyor et  al. 1995, DeSouza 
et al. 1998). Increased endometrial capillary permeability 
at the location of the blastocyst is also exhibited, lending 
to implantation and subsequent decidualization of 
stromal cells (Psychoyos 1973b, Matsumoto et al. 2002a).

The classic physiological actions of estrogen on its  
target organ are mediated by its binding to ER, which 
activates the receptor by promoting dimerization and 
then translocation to the nucleus to bind its responsive  
element in the DNA (Kumar & Chambon 1988). The  
distribution and expression of ER subtypes varies due to 
their tissue-specific physiological functions in various 
organ systems. ERα (ESR1), for example, is mainly present 
in mammary gland tissue, uterus, thecal cells of the ovary, 
bone, liver, adipose tissue, testes, epididymis of the male 
reproductive organs, and the stroma of the prostate. ERβ 
(ESR2) is mainly found in the epithelium of the prostate, 
bladder, granulosa cells of the ovary, colon adipose tissue, 
and the immune system (Dahlman-Wright et  al. 2006, 
Heldring et al. 2007). Although ERα is the predominant 
isoform in certain tissues, both receptors have high affin-
ity to estradiol-17β (E2) in the same estrogen response  
element (ERE), and they share approximately 95 and 55% 
homology in the DNA-binding domain and the hormone-
binding domain, respectively (Kuiper et al. 1997, Tremblay 
et al. 1997). However, it has been demonstrated that the 
biological disruption of Erα gene causes infertility due to 
defects in the reproductive tract and gonads of female 
mice, whereas disruption of the Erβ gene by the insertion 
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of neo-cassette into exon 3 is associated with only disrup-
tion of ovulation (Lubahn et  al. 1993, Eddy et  al. 1996, 
Krege et al. 1998, Couse et al. 2005).

The innovation of genetically induced mice has allowed 
for further knowledge of estrogen signaling. Studies on Erα- 
and Erβ-KO mice have demonstrated that Erα is essential 
for endometrial receptivity (Lubahn et  al. 1993, Cooke 
et al. 1997, Buchanan et al. 1999). Similarly, studies using  
Pr-null mouse strains have demonstrated that uterine 
stromal cells are the mediators of progesterone inhibitory 
effects on estrogen-induced proliferative response of the 
uterine epithelium (Kurita et  al. 1998). Simultaneously, 
Tan and coworkers (1999) demonstrated that there is 
compartmentalization of uterine Erα, but extremely low-
to-undetectable expression of Erβ is associated with early 
peri-implantation days of gestation. During early gestation 
(days 1 and 2), Erα mRNA is primarily localized in the lumi-
nal and glandular epithelium, whereas localization is addi-
tionally seen in the stroma on days 3 and 4; however, by 
day 8 of gestation, Erα exhibits downregulation of decidual 
cells immediately surrounding the embryo. Collectively, 
these studies suggest that specific regulation of ER gene 
expression seems to define the implantation window.

Additionally, analysis of the implantation window 
has demonstrated that the estrogen effects on the endo-
metrium are tightly regulated. Ma and coworkers (2003) 
demonstrated that lower estrogen levels tend to sustain 
the receptivity of the uterus; however, higher concentra-
tions shut down this time window, although the exact 
mechanism is not well understood (Ma et  al. 2003). 
NCOA6 is a coactivator for multiple nuclear receptors. 
Its absence, as demonstrated by studies using Ncoa6-KO 
mice, causes failure to develop due to defects noted in  
the placenta and other tissues (Kuang et  al. 2002,  
Mahajan & Samuels 2005). Kawagoe and coworkers (2012)  
demonstrated that Ncoa6 regulates estrogen sensitivity  
and signaling affecting the uterine receptivity status. 
Using a conditional KO of Ncoa6 in mice, Kawagoe was 
able to demonstrate that loss of NCOA6 results in ERα 
accumulation in stromal cells and accumulation of  
steroid receptor coactivator 3 (SRC3), a potent ERα  
coactivator (Kawagoe et  al. 2012). Therefore, the loss 
of NCOA6 leads to the inability to attenuate estrogen 
sensitivity via an accumulation of ERα and SRC3 at the 
implantation site, rendering the uterus nonreceptive with 
pregnancy failure.

These observations suggest a localized site of the 
coordinated effects of estrogen on its target tissue. As 
both stroma and epithelium express ERα, one would 
assume that estrogen-induced epithelial proliferation 

is controlled directly through the interaction with the 
specific nuclear steroid receptor. However, studies have 
demonstrated that estrogen-induced response in target 
tissue is not necessarily related to its affinity or occupancy 
to the receptor (Das et  al. 1997), because an estrogen 
receptor antagonist, ICI-182,780, failed to inhibit uterine 
estrogen-responsive lactoferrin (Ltf) gene expression 
and water imbibition induced by certain estrogens in  
Er-KO mice. However, the antagonist ICI-182,780 indeed 
suppressed the uterine Ltf expression in wild-type mice 
induced after E2, which indicated an estrogen signaling 
independent of both ERα and ERβ.

Distinct estrogen signaling pathways

Specific functions of AF1 and AF-2 domains of ERα

Binding of ER at genomic sites regulates gene expression. 
Different physiological responses are initiated by binding 
of estrogen to ER, leading to receptor conformational 
changes that are required for transcriptional activity. Two 
transactivation function domains mediate transcriptional 
activation: activation function-1 (AF1) in the N-terminal 
domain and activation function-2 (AF2) in the C-terminal 
ligand-binding domain (LBD) (Tremblay et  al. 1999, 
Kushner et  al. 2000). Both AFs have unique differential 
gene activation through cell type-specific coactivators 
(Xu et  al. 1998, Hsia et  al. 2010). Previous studies 
demonstrated that the significance of these specific 
domains with regard to the functionality of ER depends 
on AF1 (Merot et al. 2004).

However, although reproduction is affected in Erα-
null mice (Lubahn et al. 1993), several estrogen effects still 
persist, such as early responses to uterine edema and gene 
expression (Das et al. 1997, Das et al. 2000) and vascular 
injury response (Iafrati et al. 1997). In the uterus of this 
null mouse, through alternative splicing, a chimeric small 
ERα protein (~55 kDa), in which 64 amino acid residues 
belonging mainly to the B region, can be partially deleted 
from the N-terminal A/B regions of Erα (Couse et al. 1995). 
In addition, studies also reported detection of a short form 
of Erα transcript in the uterus, representing the deletion of 
a portion of exon 2 followed by the insertion of a frameshift 
and at least two stop codons at the 5′-end of exon 3 (Couse 
et al. 1995), but the significance of this remains unknown. 
The truncated small Erα variant lacks the AF1 domain, 
which according to Pendaries coworkers could be partially 
dispensable to mediate the estrogenic effects in the uterus, 
because the variant possesses a residual estrogen-dependent 
transcriptional activity with an intact AF2 region  
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(Couse et al. 1995, Pendaries et al. 2002). Further studies 
revealed the crucial role of AF2 for estrogen-mediated 
endometrial epithelial proliferation using antagonists 
and selective ER modulators (SERMs) (Arao et  al. 2011). 
However, further studies also revealed that activation 
of AF1 function is required for the E2-induced uterine 
epithelial proliferation, whereas it is partially dispensable 
for the induction of uterine edema by chronic estrogen 
stimulation (Abot et  al. 2013). Additionally, Kurita 
coworkers (2005) revealed differences in the estrogen-
induced proliferative responses between human and 
mouse epithelial cells, which seem to be species specific 
with regard to using AF domains within the ERα. Therefore, 
further investigations into these domains to evaluate the 
specific physiological roles of AF1 and AF2 are still needed.

Interdependent regulation by uterine epithelial and 
stromal cells

Deletion of ERα in uterine epithelial cells leads to infertility; 
however, this receptor loss does not prevent estrogen-
induced epithelial cell proliferation (Winuthayanon et al. 
2010). In this regard, tissue recombination studies have 
also shown that ERα action in stromal cells mediates the 
estrogenic proliferation events in the epithelium in a 
paracrine manner (Cooke et al. 1997, Cunha et al. 2004). 
In addition, Pawar and coworkers (2015) also showed 
that epithelial ERα controls uterine decidualization via 
a paracrine mechanism of epithelial–stromal cross talk 

during the early implantation. Similarly, downregulation 
of the progesterone receptor in the uterine epithelium is 
depended on stromal ERα (Kurita et al. 2000). The theory 
of interdependency between the endometrial epithelium 
and the stroma proposes an intercellular cross talk through 
different signaling pathways (Fig.  1), which can mimic 
the effects of the traditional ligand–receptor pathway.

Leukemia inhibitory factor signaling

Leukemia inhibitory factor (LIF) is a well-characterized 
paracrine factor produced by the glandular epithelium under 
estrogen stimulation that regulates implantation (Stewart 
et al. 1992). It executes its biological function by activating 
its own receptor (LIFR) followed by the recruitment of 
glycoprotein 130 (GP130) (Taga & Kishimoto 1997). Yang 
and coworkers (1995) demonstrated the expression patterns 
of Lifr and Gp130 in the luminal epithelium on day 4 of 
pregnancy in mice. LIF acts on the luminal epithelium to 
activate Janus kinase (JAK), a nonreceptor tyrosine kinase, 
which mediates the phosphorylation and activation of signal 
transducer and activator of transcription 3 (STAT3) (Heinrich 
et al. 1998, Tomida et al. 1999). Lif-null mice demonstrate 
normal ER and PR expression, but absence in the expression 
of EGF-like growth factors such as heparin-binding 
epidermal growth factor (Hbegf), amphiregulin (Areg), and 
epiregulin (Ereg) near the blastocyst on day 4 of gestation 
(Song et  al. 2000). Although the exact function of EGFs  
is unknown, the EGF receptors are expressed on stromal cells 

Figure 1 
A schematic model for a molecular cross talk 
between the endometrial epithelium and 
stroma proposes a traditional ligand–receptor 
pathway during the regulation of cellular 
proliferation and differentiation under the 
direction of ovarian steroid hormones.

http://dx.doi.org/10.1530/JME-15-0300
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during pregnancy, suggesting a role as paracrine mediators 
driving stromal proliferation (Fig. 1) (Song et al. 2000, Xie 
et  al. 2007). Furthermore, Stat3-null mice demonstrate 
increased epithelial expression of estrogen-regulated genes 
Ltf and Muc1, which heighten estrogen signaling allowing 
for persistent proliferation in the luminal epithelium and a 
lack of proliferation in the stromal layer (Sun et al. 2013), 
indicating an a nonreceptive uterine state. Collectively, 
these findings demonstrate that the loss of the LIF-STAT3 
signaling pathway culminates in undifferentiated uterine 
epithelium and is therefore nonreceptive to the embryo 
implantation.

Indian hedgehog signaling

Indian hedgehog (IHH), a member of the hedgehog gene 
family, is a progesterone-regulated factor produced in  
the epithelium and controls stromal function via paracrine 
mechanisms (Fig. 1) (Matsumoto et al. 2002b, Takamoto  
et al. 2002). Using a conditional Ihhd/d-KO mouse model, 
studies have demonstrated that in the absence of Ihh, a 
uterine nonreceptive state is achieved secondary to failure 
of stromal cell proliferation and vascularization along with 
increased estrogen signaling during the peri-implantation 
phase (Lee et  al. 2006, Franco et  al. 2010). The lack of 
stromal cell proliferation is in part due to Ihhs regulation 
of the EGFR in the stromal compartment, which allows 
the stroma to be activated by the EGFs produced by the 
epithelium secondary to estrogen stimulation (Franco 
et al. 2010). These observations suggest that the hedgehog 
signaling cascade plays a crucial role in the events 
occurring just before decidualization.

Chicken ovalbumin upstream promoter-transcription 
factor 2 signaling

Previous studies have shown that epithelial IHH 
stimulates chicken ovalbumin upstream promoter-
transcription factor 2 (COUP-TF2) (also known as 
nuclear receptor subfamily 2, group F, member 2 
(Nr2f2)), a stromal factor that mediates decidualization 
(Takamoto et  al. 2002, Lee et  al. 2006, Lee et  al. 
2010). Using PR-Cre to cause conditional ablation of 
endometrial COUP-TF2 in mice demonstrates a defect 
linked to decreased expression of bone morphogenic 
protein 2 (BMP2), a factor produced by the stroma in 
response to progesterone stimulation (Kurihara et  al. 
2007). This aberration results in failure to undergo 
structural changes involved in decidualization. 
Additionally, Coup-Tf2-deficient mice show an increase 

in epithelial ERα expression and increased estrogen 
activity, resulting in Ltf and Muc1 expression (Kurihara 
et al. 2007). Furthermore, studies have shown that the 
loss of epithelial ERα activity by COUP-TF2 is critical 
for successful progression of embryo implantation 
and decidualization (Lee et  al. 2010). Overall, these  
studies conclude that COUP-TF2 plays a major role 
in epithelial remodeling and differentiation through 
controlling ERα activity to support the initiation of 
embryo implantation.

Fibroblastic growth factor/insulin-like growth factor 
signaling

Stromal factors that regulate epithelial function have 
also been identified in the intercellular communication 
pathways, which play a critical role in the implantation 
window. Specifically, fibroblast growth factors (FGFs) and 
insulin-like growth factor 1 (IGF1) have been proposed for 
stromal epithelial communication in a variety of tissues. 
The FGF family is a group of stromal ERα-induced paracrine 
factors that act on the epithelium to activate ERK1/2 
signaling cascades that stimulate epithelial proliferation 
(Fig.  1) (Li et  al. 2011). In this regard, based on uterine 
coculture experiments, evidence suggests that estrogen-
mediated epithelial proliferation may involve stroma-
derived factors FGF10 and BMP8a (Chung et  al. 2015). 
With the FGF10 receptor, FGFR2, primarily detected in the 
epithelial cells in both the coculture system and the adult 
ovariectomized uteri, collectively these results suggest 
that FGF10/FGFR2 signaling may be specifically involved 
in the stroma–epithelial cross talk during early pregnancy. 
However, Filant and coworkers (2014) demonstrated 
that conditional ablation of FGFR2 after birth results in 
abnormal basal cell appearance and stratification in the 
luminal epithelium, as well as subfertility that progressed 
to infertility. These results show the critical importance of 
FGFR2 in postnatal uterine development of LE and female 
fertility; however, further studies are needed to delineate 
the molecular mechanism resulting in the observed 
phenomenon in Fgfr2-null mice, which leads to complete 
infertility in multiparous Fgfr2-mutant mice. Similarly, 
IGF1, following estrogen stimulation, is abundantly 
detected in the uterus with IGF1R being identified in 
the epithelium (Murphy and Ghahary 1990, Kapur et al. 
1992). A lack of IGF1 expression is observed in Er-KO 
mice stimulated with estrogen, validating these previous 
findings (Hewitt et  al. 2010). The fact that IGF1R and 
IGF1 are abundantly expressed in the uterine epithelium 
suggests that IGF1 may be a paracrine mediator involved 
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in the epithelial proliferation during early pregnancy. It is 
hypothesized that IGF1 stimulates activation of PI3/AKT  
pathway in the epithelium, which phosphorylates and 
inactivates glycogen synthase kinase 3 beta (GSK3β), 
allowing for epithelial proliferation (Zhu and Pollard 
2007). When analyzing the role of IGF1 in Igf1-KO mice, 
Sato and coworkers (2002) demonstrated that uterine 
growth is supported by systemic IGF1 in the absence of 
local IGF1 production. This suggests that local IGF1 is 
not a direct mediator to estrogen effects in the uterus, but 
rather systemic IGF1 may be the key factor for growth.

Wnt signaling

The biological effect of estrogen can also be associated with 
Wnt signaling pathways. Wnt is a family of genes that 
encode a large group of glycoproteins that have a critical 
role in embryonic development and are also involved in 
tumorigenesis (Smalley & Dale 1999). The canonical Wnt 
signaling pathway, which involves regulation of β-catenin, 
has been the most widely studied. The activation of Wnt 
signaling stabilizes intracellular β-catenin by antagonizing 
the kinase activity of GSK3β. In the absence of Wnt 
signaling, GSK3β forms a multimolecular complex with 
axin (a bridging molecule), adenomatous polyposis coli, 
and β-catenin, leading to phosphorylation and then 
subsequent degradation via ubiquitination pathway of 
β-catenin. When activated, β-catenin translocates to the 
nucleus and forms a complex with downstream effectors 
such as lymphoid enhancer factor (Lef)/T-cell factor (Tcf) 
family that stimulates the transcription of Wnt target genes. 
These target genes are involved in cellular organization 
during embryonic development, proliferation, and 
differentiation as well as cell-to-cell communication and 
cell fate specification (Smalley & Dale 1999).

Previous studies have shown that Wnt4 expression 
is upregulated at the site of embryo implantation during 
decidualization (Daikoku et  al. 2004). Further studies 
revealed that Wnt4 plays a key role in implantation and 
decidualization (Franco et  al. 2011), and this action is 
mediated downstream of progesterone via β-catenin signaling 
pathway in uterine stromal activity with proliferation and 
differentiation (Rider et al. 2006, Li et al. 2013).

We previously demonstrated the presence of an 
ER-independent pathway of estrogen stimulation via Wnt 
pathway (Hou et al. 2004). After exposing Erα-KO (ERKO) 
mice with estrogen, prompt stabilization and localiza-
tion of β-catenin in the nucleus of uterine epithelial cells 
were observed. This finding confirmed that injection of 
adenovirus-driven expression of SFRP2, a Wnt antagonist, 

was suppressed rapidly by estrogen during the early phase 
in the uterus in an ER-independent manner, since as 
reported by (Das et al. 2000), demonstrating the downreg-
ulation of β-catenin and halting of epithelial cell growth 
without affecting early estrogen effects (Hou et al. 2004). 
Similarly, studies have also shown that Wnt/β-catenin 
downstream effectors Lef1 and Tcf3 are upregulated in an 
estrogen-independent manner (Ray et al. 2008). Through 
immunofluorescence studies, Lef1/Tcf3 localization was 
confirmed in the epithelial cells after estrogen exposure 
and was interestingly found to be interacting with ERα in 
a time-dependent manner (Ray et al. 2008). Furthermore, 
evidence was provided for an ERα and Tcf3/Lef1 complex 
occupying a certain DNA region of estrogen-responsive 
gene promoters, suggesting a nonclassical induction 
mechanism of the Wnt/β-catenin pathway that is neces-
sary in the estrogen-dependent gene regulation.

GPR30 signaling

GPR30 (also known as GPER1), a G-protein-coupled 
receptor, has been implicated in early nongenomic signaling 
mediated by E2. In mouse uterus, GPR30 localizes primarily 
in the uterine epithelial cells (Gao et  al. 2011). Studies 
from Gpr30-KO mice appear to imply that GPR30’s role in 
uterine biology is minimal for estrogenic growth regulation 
(Wang et al. 2008, Martensson et al. 2009, Otto et al. 2009). 
In contrast, using selective activation of GPR30 by G1, 
studies have shown that GPR30 is involved in regulating 
early signaling events, including the inhibition of ERK1/2 
and ERα (Ser118) phosphorylation signals in the uterine 
stromal compartment, suggesting that a paracrine signaling 
is involved (Fig. 1) (Gao et al. 2011). However, it should be 
noted that this study was unable to exclude the possibility 
through the off-target effects of G1. Moreover, further 
studies should be considered to show that Gper1-null mice 
are insensitive to G1 in the above uterine effects. Overall, 
studies show that GPR30 can act as a negative regulator of 
ERα-dependent uterine growth in response to E2.

Molecular links between the phase I and 
phase II estrogenic responses in the uterus

Early (phase I) and late (phase II) estrogenic responses in 
the uterus have been recognized for more than 70 years, 
yet mechanisms involved in their regulation remain 
controversial. One concept is that an early events(s), 
occurring within the first 6 h, prepares the uterus for later 
(18 – 30  h) increase in DNA synthesis, cell proliferation, 
and protein synthesis. An alternate view is that the late 
growth phase is a result of the continuous presence of 
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a stimulus. Discussion of either concept usually makes 
the assumption that all of the responses are dependent 
upon ligand interaction with one of the two estrogen 
receptor isoforms (ERα and ERβ). However, we and others 
have shown that Erα-null mice (ERKO) or wild-type mice 
in which ER functions are silenced by ER antagonist  
ICI-182,780 manifest the expression of several early genes 
in response to 4-hydroxyextradiol-17β or a xenoestrogen 
(kepone), as well as induction of early responses such 
as water imbibition and macromolecular uptake by 
4-hydroxyextradiol-17β (Das et  al. 1997, 1998, 2000, 
Hewitt et al. 2003, Watanabe et al. 2003, Hou et al. 2004, 
Ray et  al. 2006). Furthermore, studies have also shown 
that ICI was able to suppress the expression of Ltf, a 
well-characterized estrogen-responsive uterine gene, in 
the wild-type mice after E2, indicating the effectiveness 
of ICI in this study (Das et  al. 1997, 1998). Using the 
same effective dose of ICI (Das et  al. 1997, 1998), we 
have identified two such ER-independent uterine genes 
Bip (Hspa5) and Sik-SP (Nop58) that are regulated by E2 
in ERKO mice (Das et  al. 2000). The bimodal nature of 
estrogen effects coupled with phase I ER-independent 
estrogenic responses and phase II mostly ER-dependent 
responses has ignited interest in understanding the 
pathways linking these two phases.

Role of Bip

Bip, also known as Grp78 encoded by Hspa5, is a member 
of the heat-shock protein (HSP70) chaperone family, and 
it is induced by estrogen in an ER-independent manner 
as a phase I response (Das et  al. 2000, Ray et  al. 2006). 
It is a protein that resides in the endoplasmic reticulum 
(Fig.  2), where assembly of newly synthesized peptides 
occurs, and is abundantly present during cell proliferation 
and differentiation, particularly at the site of embryo 
implantation during decidualization (Simmons and 
Kennedy 2000). As a chaperone molecule, the role of BIP 
is for functional maturation of steroid hormone receptors. 
In the mouse uterus, it mediates  estrogen-dependent 
responses through molecular association with ERα (Ray 
et al. 2006). Studies have demonstrated through in vivo and 
in vitro mouse models that suppression of Bip antagonizes 
Erα-mediated gene transcription and compromises 
estrogen-dependent phase II growth response (uterine 
epithelial cell proliferation) with sustained phase I 
responses (water accumulation and macromolecular 
uptake). Most interesting is the lack of growth response in 
the presence of ERKO state even if Bip is upregulated (Ray 
et al. 2007). Although this study analyzed xenoestrogen 
and Bip, it demonstrates the close relationship between 

Figure 2 
A schematic model for Sik-SP- and Bip-mediated 
estrogen signaling in uterine cell proliferation. 
The molecular cross talk mediated by Bip, in the 
translocation of ERα from the endoplasmic 
reticulum to the nucleus under the direction of 
estrogen. In the nucleus, distinct accumulation 
of Sik-SP and its association with ERα in the 
nucleolar region is necessary for the SIK-SP/ERα 
complex-mediated regulation of gene 
transcription and cellular proliferation.
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Bip and ERα in regulation of uterine growth. Together, 
studies suggest that the functional activation of ERα via 
Bip plays a role in coordinating phase I responses with 
those of phase II for regulated growth and differentiation 
via estrogen signaling in the mouse uterus.

Some organochlorine compounds, such as polychlo-
rinated biphenyls, are highly persistent organic pollut-
ants in many industrial nations. These compounds have 
gained attention recently secondary to their potential for 
adverse effects on health and reproduction. The reproduc-
tive toxicity is thought to be due to their estrogen-like 
properties; hence, they are categorized as xenoestrogens. 
The ability to bind to ERα allows for mimicking effect on 
target organ function, yet the mechanisms are not well 
defined (Das et al. 1997). There are, however, significant 
differences in coactivator recruitment and transcriptional 
activation in tissues exposed to xenoestrogens corre-
sponding to distinct biological effects causing endocrine 
disruption. Furthermore, these compounds are effective 
at very low doses comparable to their level of exposure, 
making them very potent estrogens (Ray et al. 2007).

Knowing the critical role that Bip plays in regulation 
of estrogen-dependent ERα-mediated gene transcription 
and growth, the xenoestrogen-mediated effects with regard 
to the upregulation of Bip under certain conditions could 
be potentially harmful with respect to enhanced uterine 
estrogenicity. Specifically, the xenoestrogen kepone can 
induce sustainable levels of uterine Bip without involving 
ER, which in turn regulates the kepone-dependent ERα-
mediated gene expression (Ray et  al. 2007). Furthermore, 
with the notion that stress can regulate Bip expression  
and the ability of uterine growth via stress-induced  
estrogen response in mice, studies have demonstrated that  
endogenous Bip via stress-related signals contributes to  
uterine estrogenicity for kepone (Ray et al. 2007). Thus, the 
combination of a variety of signals in the body, such as stress, 
and xenoestrogens can act as a plausible risk factor enhancing  
estrogenicity and therefore major health concerns.

Role of Sik-SP

The nucleolus is the nuclear subdomain that primarily 
carries out the assembly of ribosomal subunits in eukaryotic 
cells. A recent study has uncovered an unexpected role 
of uterine estrogen signaling which involves a nucleolar 
protein SIK-similar protein (SIK-SP, also known as NOP58/
NOP5/NOl5) (Chung et al. 2012). Studies have shown that 
the expression of uterine Sik-SP is tightly regulated by E2 
in an ER-independent manner but is still required for the 

control of ERα-mediated late uterine functions (Fig.  2) 
(Das et  al. 2000, Chung et  al. 2012). Specifically, using 
both the in vivo and in vitro coculture approaches, studies 
have shown that E2-induced Sik-SP directly interacts 
with ERα to mediate ERα-dependent gene regulation and 
is necessary to coordinate the biphasic responses in the 
uterus for its appropriate growth under the direction of 
E2. Overall, this finding of ERα-independent early Sik-SP 
contributing to ERα-regulated events adds new insights to 
our understanding of nucleolar involvement in uterine 
estrogen signaling.

Taken together, these studies provide evidence of  
nonclassical pathways that mediate estrogen actions in a 
time-dependent fashion, possibly shedding a light on how 
the biphasic, phase I and phase II, estrogenic responses are 
molecularly linked to mediate uterine cell proliferation.

ER-independent genes associated with 
embryo implantation

To understand the functional significance of estrogen-
induced ER-independent early uterine genes, studies were 
undertaken to determine whether E2 administration in 
the delayed implantation model in mice enhances the 
expression of Bip and Sik-SP at the site of implantation. 
Indeed, results demonstrated that these genes are 
specifically upregulated in the subluminal stromal 
cells at the site of the implanting embryo following 
activation with E2; however, the delayed stage of the 
uterus does not show any expression at the site of embryo  

Figure 3
Analysis of expression for Bip mRNAs. In situ hybridization detects the 
expression of Bip at the site of implantation on D5 of pregnancy in mice. 
le, luminal epithelium; s, stroma; e, implanting embryo; M, mesometrial 
pole; AM, antimesometrial pole.
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(Reese et  al. 2001, Chung et  al. 2012). Furthermore, 
this induced expression is consistent with the status of 
expression in normal implantation sites on D5 for Bip 
(Fig.  3) and Sik-SP (Chung et  al. 2012). Taken together, 
studies have shown that these ER-independent genes are 
physiologically important during the onset of embryo 
implantation under the direction of E2.

Conclusions

This article has served as an update of the literature 
describing the molecules involved in estrogen signaling 
in the mouse uterus during early pregnancy. We have 
discussed the signaling pathways that are ER dependent 
and ER independent as well as the molecular links that 
shed light into the complexity of the bimodal estrogen 
actions occurring in early pregnancy. Dysregulation 
of the cross talk between these pathways can lead to 
implantation failure through the inability to obtain a 
receptive uterine epithelium. Environmental toxins can 
mimic estrogen pathways; however, the mediated effects 
differ from normal through the enhanced estrogenicity 
of the uterus creating a nonreceptive uterine epithelium. 
Continued research into the mechanisms involved in 
estrogen signaling will expand our understanding of this 
delicate and time-sensitive event. Understanding the 
molecular interactions will provide the knowledge needed 
to improve current treatments of infertility through the 
exploration of new ideas, techniques, and technology.
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