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Abstract
Obesity is a new global pandemic, with growing incidence and prevalence. This disease is

associated with increased risk of several pathologies, including diabetes, cardiovascular

diseases, and cancer. The mechanisms underlying obesity-associated metabolic changes are

the focus of efforts to identify new therapies. Stress-activated protein kinases (SAPK),

including cJun N-terminal kinases (JNKs) and p38, are required for cellular responses

to metabolic stress and therefore might contribute to the pathogenesis of obesity.

Tissue-specific knockout models support a cell-type-specific role for JNK isoforms, in

particular JNK1, highlighting its importance in cell homeostasis and organ crosstalk.

However, more efforts are needed to elucidate the specific roles of other JNK isoforms and

p38 family members in metabolism and obesity. This review provides an overview of the role

of SAPKs in the regulation of metabolism.
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Introduction
The totality of biochemical reactions that a cell requires to

grow, survive and respond to external stimuli is known as

metabolism. These processes are classified into two

interdependent groups. Catabolism is the set of reactions

that break down complex molecules to produce energy.

This process produces NADH or ATP, which are required

to synthesize macromolecules such as proteins, lipids and

nucleic acids. This set of synthetic reactions is known as

anabolism. Anabolism and catabolism play opposing roles

in the maintenance of cell functions, but these processes

are tightly coordinated in order to preserve cell homeo-

stasis. Endocrine hormones, such as insulin, finely

regulate the molecular pathways involved in the acti-

vation of anabolic and catabolic enzymes. Whenever this

coordinated regulation is lost, anabolism and catabolism

become unbalanced, giving rise to metabolic disorders.
Obesity, the most common metabolic disorder worldwide,

develops when energy intake exceeds energy expenditure

(Speakman 2010). Obesity is a major cause of morbidity

and mortality, and is associated with increased risk of

type 2 diabetes mellitus, heart disease, metabolic syn-

drome, hypertension, stroke, and certain forms of cancer

(Haslam & James 2005). The design of new treatments

requires knowledge of the diverse molecular mechanisms

that contribute to obesity and its associated diseases.

MAPK signalling cascades transduce a variety of

extracellular signals that regulate cellular responses

(Sabio & Davis 2014). Three groups of MAPKs have been

identified: the ERK, the p38 MAPKs, and the cJun

N-terminal kinases (JNK). ERKs are mainly activated

by mitogens and differentiation signals, JNK and p38

MAPK are activated by stress stimuli and are
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Stress-activated protein kinase signaling pathway. Like all MAPK family

members, the SAPKs, JNKs and p38s, are activated by a phosphorylation

cascade. SAPKs are activated by stimuli such as cytokines and free fatty

acids, which are abundant in the obese state. Activation culminates with

the phosphorylation of specific target proteins, inducing the appropriate

cell response depending on the cell stimulus.Jo
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collectively named stress-activated protein kinases (SAPK)

(Fig. 1) (Sabio & Davis 2014). The SAPK family is composed

of the four isoforms of p38 (p38 alpha, beta, gamma and

delta) and the three isoforms of JNK (JNK1, 2, and 3) (Paul

et al. 1997). While the JNK pathway has been extensively

studied and JNK1 has been implicated in the development

of obesity and insulin resistance (Sabio & Davis 2010), the

role of p38 MAPKs in this context has received less

attention. Obesity results in a low-grade inflammation

state (Neels & Olefsky 2006), with increased levels of

proinflammatory cytokines such as tumour necrosis factor

alpha (TNFa) and interleukin 6 (IL6) and of circulating free

fatty acids (FFA), causing the activation of stress-induced

mechanisms in the cell (Hotamisligil 2006).
cJun N-terminal kinases

Three genes encode the members of JNK family. While

Jnk1 and Jnk2 are ubiquitously expressed, Jnk3 is
http://jme.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JME-15-0146 Printed in Great Britain
specifically expressed in brain, testis and heart (Davis

2000, Chang & Karin 2001). Each JNK member can be

expressed in several splice variants, which can be

separated in two groups based on their size: the short

forms of about 46 kDa (JNK1a1, JNK1b1, JNK2a1 JNK2b1

JNK3a1) and the long forms of about 54 KDa (JNK1a2,

JNK1b2, JNK2a2 JNK2b2 JNK3a2) (Gupta et al. 1996,

Yu et al. 2004). Many cells types express at least four JNK

splice variants, with JNK1 variants predominating over

JNK2 variants among the short forms and the reverse

pattern observed for the long forms (Gupta et al. 1996, Yu

et al. 2004). The function and the exact modulation of

each of these splice variants is still unsolved.

JNKs are activated in response to a wide range of

stimuli, such as cytokines (IL6, TNFa), environmental

stresses (hypoxia, u.v. and ionizing radiation), toxins,

drugs and metabolic changes, including obesity and

hyperlipidaemia. JNKs are directly activated by two

upstream MAP kinase kinase (MAP2K) enzymes, MKK4
Published by Bioscientifica Ltd.
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and MKK7, through a dual phosphorylation on tyrosine

and threonine in the conserved Thr-Pro-Tyr motif in their

activation loop (Paul et al. 1997). The more than 50

proteins identified as JNK substrates include c-Jun, which

once phosphorylated can dimerize with JunB, JunD or

c-Fos to form the transcription factor activator protein-1

(AP-1) (Hotamisligil et al. 1996a); insulin receptor

substrate 1 (IRS1) (Kim et al. 2004b); c-myc; p53, and

numerous transcription factors (Davis 2000, Chang &

Karin 2001, Bogoyevitch & Kobe 2006). Through the

phosphorylation of their targets, JNKs induce a specific

cell response to the specific stimulus, characterized by

apoptosis, cell proliferation, and cell migration.

Despite its importance for brain function (Pirianov

et al. 2007, Yoon et al. 2012), the JNK3 isoform as yet has

no demonstrated role in metabolism. In contrast, a large

body of literature attests to the key roles of JNK1 and JNK2

isoforms as regulators during obesity-induced inflam-

mation and metabolic disorders (Tuncman et al. 2006,
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Figure 2

Organ-specific roles of JNK isoforms in metabolism. JNK proteins play a pivotal r

and have been extensively studied in tissue-specific knockout mouse models.

http://jme.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JME-15-0146 Printed in Great Britain
Singh et al. 2009, Czaja 2010, Han et al. 2013). The JNK

pathway is strongly activated in liver, adipose tissue and

muscle during dietary and genetically-induced obesity

(Hirosumi et al. 2002). Hirosumi et al. (2002) showed that

mice with whole-body knockout of JNK1, but not JNK2,

are protected against obesity and insulin. This finding

correlates with a reduced total JNK activation in JNK1

knockout, whereas JNK2 knockout mice do not show this

effect. Moreover, JNK1 knockout mice gain less weight

(Hirosumi et al. 2002) and are resistant to liver steatosis

induced by a diet deficient in methionine and choline

(Schattenberg et al. 2006). Here, we provide an overview of

the roles of JNK1 and JNK2 in metabolism and metabolic

disorders (Fig. 2).
Liver

In mammals, the liver plays an essential role in

metabolism, and is central to the maintenance of glucose
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ole in metabolism. Functions of JNK1 and JNK2 are organ- and cell-specific,
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and lipid homeostasis in the body. Hepatic insulin

resistance and non-alcoholic fatty liver disease (NAFLD)

are the most frequent liver consequences of the obese

state. Using adenoviruses to overexpress or downregulate

JNK, Nakatani et al. (2004) defined a central role for

the hepatic JNK pathway in determining whole-body

insulin sensitivity. These authors showed that hepatic

overexpression of WT JNK induces insulin resistance

in non-diabetic mice, whereas suppression of the JNK

pathway in liver ameliorated insulin resistance in geneti-

cally obese mice (Nakatani et al. 2004). Moreover, studies

in whole-body JNK1-knockout mice have shown that this

kinase controls lipid accumulation and lipid uptake in

liver (Imbernon et al. 2013). These findings indicate that

the role of JNKs isoforms can differ between cell types.

In fact, the phenotype of whole-body JNK1-knockout mice

(Hirosumi et al. 2002) and adenovirus-treated mice

(Nakatani et al. 2004) could be due to the ablation of

JNK1 in parenchymal cells or extra hepatic tissues,

highlighting the importance of cell and organ crosstalk.

Hepatocyte-specific deletion of JNK1 provided further

information about its role in liver steatosis and insulin

resistance during obesity. Intriguingly, these mice dis-

played increased insulin resistance, glucose intolerance

and hepatic steatosis, showing that JNK1 plays a protective

role in hepatocytes (Sabio et al. 2009). In contrast,

hepatocyte-specific simultaneous knockout of JNK1 and

JNK2 induces systemic protection against high fat diet

(HFD)-induced insulin resistance (Vernia et al. 2014).

Vernia et al. demonstrated that JNK could indirectly

inhibit the activity of the nuclear peroxisome proliferator-

activated receptor alpha (PPARa), thus preventing

production of fibroblast growth factor 21 (FGF21). FGF21

plays a pivotal role in control ketogenesis, insulin

sensitivity, glycaemia and obesity. In consequence, they

found that lack of JNK1/2 in hepatocytes protects against

obesity-induced diabetes (Vernia et al. 2014). JNK1

modulates liver insulin resistance and steatosis through

two distinct molecular actions. On one hand, JNK1,

upon activation by proinflammatory cytokines (e.g.

TNFa) and circulating FFAs, phosphorylates the IRS1 on

serine 307, preventing its interaction with the insulin

receptor. This blocks insulin cellular signalling, inducing

insulin resistance (Hotamisligil et al. 1996b, Aguirre et al.

2000). On the other hand, JNK1 is necessary in hepato-

cytes for the homeostatic maintenance of gluconeogenesis

and lipogenesis and the prevention of hepatic insulin

clearance due to the elevated expression of insulin

receptor in this cell type (Sabio et al. 2009).
http://jme.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JME-15-0146 Printed in Great Britain
Adipose tissue

The most important organ for lipid storage is adipose

tissue, the only tissue with high capacity to expand in a

non-transformed state. However, adipocytes are not

merely fat storage cells, in fact play a central role in

metabolism and organismal homeostasis through the

secretion of adipokines (Gavrilova et al. 2000). In the

obese state, adipocyte enlargement induces molecular

and cellular alterations that affect whole-body metabolic

homeostasis. Increased lipolysis in adipocytes leads to

increased hyperlipidaemia and lipid accumulation in

peripheral organs, in particular muscle and liver.

Moreover, adipocytes begin to produce a number of

proinflammatory cytokines, such as IL6, TNFa, monocyte-

chemoattractant protein-1 (MCP-1), inducible isoform

nitric oxide synthase (iNOS), transforming growth

factor-beta1 (TGF-b1), and plasminogen activator

inhibitor-1 (PAI-1) (Hotamisligil et al. 1993). Obese

adipose tissue also recruits macrophages that contribute

to the generation of a chronic inflammation state and

insulin resistance (Weisberg et al. 2003, Xu et al. 2003).

Adipocytes are thus target of stress stimuli during obesity,

and, as mentioned previously, genetically- and dietary-

induced obesity both activate JNK in adipose tissue

(Hirosumi et al. 2002). The scaffold protein JNK interacting

protein 1 (JIP1) has been shown to play a central role in

JNK activation in adipose tissue (Jaeschke et al. 2004).

JIP1K/K mice are resistant to diet-induced obesity and

show less severe insulin resistance. JNK cannot be

activated in the adipose tissue and muscle of JIP1K/K

mice, preventing the acquisition of insulin resistance in

those tissues. However, the livers of JIP1K/K mice have no

defect in JNK activation, which may account for the

incomplete protection against insulin resistance in these

animals. This demonstrates that adipose tissue protection

from insulin resistance is cell specific and it is not due to a

whole body protection from obesity (Jaeschke et al. 2004).

Mice with adipocyte-specific JNK1-deficiency have been

used to analyse the role of JNK1 in adipose tissue (Sabio

et al. 2008). When fed a high-fat diet, these mice show a

similar body-mass gain to their control counterparts.

However, the adipocyte JNK1-knockout mice are pro-

tected against insulin resistance in adipose tissue. This

phenotype could be due to the absence of JNK1-mediated

inhibitory phosphorylation of IRS1. Surprisingly, knock-

out of JNK1 in adipose tissue also induces protection

against insulin resistance in liver (Sabio et al. 2008).

Adipose JNK1-knockout mice exhibit a strong reduction

in adipose tissue production of IL6, reflected in decreased
Published by Bioscientifica Ltd.
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levels of circulating IL6. This proinflammatory cytokine is

known to induce hepatic insulin resistance (Klover et al.

2003, Kim et al. 2004a). In conclusion, JNK1 in adipose

tissue regulates local insulin sensitivity through IRS1

phosphorylation and also controls adipocyte-IL6 pro-

duction and adipocyte crosstalk with other organs. In

the obese state, adipose JNK1 induces hepatic insulin

resistance through IL6 production (Sabio et al. 2008).
Bone-marrow-derived cells

Obesity induces a low-grade chronic inflammation that

could be partly responsible for the observed metabolic

changes (Hotamisligil 2006, Neels & Olefsky 2006).

Increasing food intake increases adipose tissue fat storage,

which induces adipocyte enlargement, hypoxia, stress,

cell death, and proinflammatory cytokine production.

These changes have been proposed to induce immune-cell

recruitment to adipose tissue and produce a chronic

activation of the immune response (Ferrante 2013).

However, how fat deposition in adipose tissue activates

the immune system is not completely understood. The

obese state also induces immune activation in organ-

resident macrophages, in particular Kupffer cells in the

liver, probably inducing insulin resistance (Lanthier et al.

2010). In order to assess the role of JNK in the immune

system in obesity and obesity-induced disorders, several

studies have examined mice lacking JNK proteins in

myeloid or bone-marrow-derived specific knock out

mice. Zhang et al. (2011) examined the effect of a high-

fat diet on transgenic mice overexpressing dominant-

negative JNK in adipose tissue and macrophages. These

mice showed reduced weight gain, insulin resistance,

glucose intolerance and hepatic steatosis. Moreover, these

mice had smaller-than-normal adipocytes, reduced

macrophage infiltration in adipose tissue, and less-severe

whole-body inflammation (Zhang et al. 2011). The authors

concluded that JNK isoforms are responsible for the

crosstalk between adipose tissue and macrophage infiltra-

tion, and showed that abrogation of their expression in

both cell types is necessary to obtain the same phenotype

seen in JNK1 full body knock out mice (Zhang et al. 2011).

However, these results do not fully elucidate the role of

JNK proteins expressed in hematopoietic cells. Solinas

et al. (2007) used adoptive transfer to demonstrate that

JNK1 deletion in non-hematopoietic tissues protects

against weight gain and, partly as a consequence, from

insulin resistance. Moreover, they showed that hemato-

poietic JNK1 removal reduces obesity-induced inflam-

mation and protects against HFD-induced insulin
http://jme.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JME-15-0146 Printed in Great Britain
resistance without affecting obesity (Solinas et al. 2007).

However, another group reported that JNK1-deficient

bone marrow transplantation was not sufficient to induce

protection against insulin resistance and macrophage

infiltration of adipose tissue in a WT recipient, whereas

this protection was induced by the absence of JNK1 in

parenchymal cells (Vallerie et al. 2008). Taken together,

these results highlight the importance of understanding

the role of JNK2 in the myeloid lineage. To address this

question, the Davis laboratory generated a myeloid-cell-

specific knockout mouse model for JNK1 and JNK2 (Han

et al. 2013). When fed a HFD, these mice show the same

obesity and hyperlipidaemia responses as WT controls, but

are more insulin sensitive (Han et al. 2013). The myeloid

JNK1/2-knockout mice also show less macrophage infiltra-

tion and decreased M1 polarization in adipose tissue. M1

polarization was also decreased in hepatic macrophages,

accompanied by increased M2 polarization, highlighting

an important role for JNK in M1 polarization. In vitro

experiments further confirmed an intrinsic defect in M1

polarization (Han et al. 2013). Finally, a role has been

described for JNK2 in T cells in type 1 diabetes (Jaeschke

et al. 2005). Non-obese diabetic (NOD) mice lacking JNK2

exhibit a decrease in spontaneous diabetes and insulitis,

probably due to increased Th2 polarization of CD4CT

cells (Jaeschke et al. 2005). The authors of this study

reported that this T-cell polarization effect was not seen in

JNK1K/K NOD mice, indicating a specific role for JNK2 in

the regulation of T-cell polarization (Jaeschke et al. 2005).
Skeletal muscle

Skeletal muscle is a very large organ that requires

abundant available energy to carry out its functions.

Myocytes therefore play a major role in insulin-induced

glucose disposal and are sensitive to obesity-induced

insulin resistance. Evidence suggests that circulating

FFAs, whose levels are increased in obesity, might be

responsible for skeletal muscle insulin resistance

(Shulman 2000, Roden 2004). FFAs induce the phos-

phorylation cascade that activates JNKs, suggesting a

possible a role for JNKs in skeletal muscle insulin

resistance. Moreover, JNK1 is activated in muscle from

HFD-fed mice (Hirosumi et al. 2002). Muscle-specific

JNK1-knockout mice reveal a role for this isoform in the

induction of insulin resistance in skeletal muscle fed a

HFD (Sabio et al. 2010a). These mice are sensitive to HFD-

induced obesity. However, they are protected against

obesity-induced insulin resistance and show increased

glucose uptake by muscle, probably as result of a reduction
Published by Bioscientifica Ltd.
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in IRS1 serine phosphorylation. Surprisingly, adipose

tissue and liver are not positively affected by JNK1

deficiency in skeletal muscle (Sabio et al. 2010a). Instead,

these mice show increased hepatic steatosis and circulat-

ing levels of triglycerides, due to a reduction in lipoprotein

lipase (Lpl) gene expression in muscle. Moreover, the

augmented blood levels of triglycerides induce an increase

in adipose tissue macrophage infiltration (Sabio et al.

2010a). Interestingly, inhibiting JNK in muscle by

overexpressing heat shock protein 72 (HSP72) improves

HFD-induced hyperglycaemia and hyperlipidaemia

(Chung et al. 2008). Moreover, it prevents glucose

intolerance and insulin resistance, and reduces HFD-

induced weight gain (Chung et al. 2008). Taken together,

these results indicate that lack of JNK1 expression in

muscle modulates insulin sensitivity in a cell-autonomous

manner but does not influence insulin sensitivity in other

tissues (Sabio et al. 2010a). However, inhibiting total

JNK activity in muscle can ameliorate the whole-body

response to HFD (Chung et al. 2008). It would be

interesting to study the effect of JNK2 deficiency in muscle

to identify its possible role in tissue crosstalk.
Pancreatic b cells

Insulin is produced by b cells in the pancreatic islets of

Langerhans. In a healthy state, b cells, which make up

65–80% of the cells in the islet, respond to increases in

serum glucose by secreting insulin, which induces glucose

uptake in peripheral organs. Chronic hyperglycaemia

induces changes in b-cell gene expression that lead to

cell hypertrophy and loss of differentiation (Jonas et al.

1999). Glucose-induced insulin gene expression is also

inhibited by saturated fatty acids (which are increased in

obesity) through the activation of JNK in b cells, resulting

in the phosphorylation and inhibition of IRS1 and IRS2

(Solinas et al. 2006). Moreover, overexpression experi-

ments have shown that activation of JNK by oxidative

stress leads to b-cell failure (Kaneto et al. 2002, 2005). JNK-

interacting protein 1, a scaffold protein that regulates JNK

activity (Whitmarsh et al. 2001), has been identified as a

potential regulator of type 2 diabetes in humans (Waeber

et al. 2000) and has been shown to mediate b-cell apoptosis

(Haefliger et al. 2003). Despite these results, experiments

in animals lacking JIP1/JIP2 protein indicate that these

proteins are not essential for b-cell viability (Standen et al.

2009). Activation of JNK in b cells by overexpression of

constitutively active MKK7 results in impaired insulin

production (Lanuza-Masdeu et al. 2013), a result consist-

ent with previous work showing that JNK2K/K b cells in
http://jme.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JME-15-0146 Printed in Great Britain
non-obese mice are protected against apoptosis induced

by T cells in a model of autoimmune type 1 diabetes

(Jaeschke et al. 2005). All these results indicate a specific

role of JNK in b cells as a regulator of insulin production

and secretion, and prolonged JNK activation, as in the

obese state, can induce islet dysfunction.
CNS

In the CNS, the onset of hypothalamic resistance to leptin

and insulin is a key event in the development of obesity

and impaired glucose homeostasis and systemic immune

responses (Belgardt & Bruning 2010, Tschop et al. 2010,

Vogt & Bruning 2013). Both hormones act on hypo-

thalamic neurons to decrease food intake and hepatic

glucose production and to increase energy expenditure

(Obici et al. 2002, Belgardt & Bruning 2010). Two neuronal

populations, each characterized by the expression of

specific neuropeptides, have potent effects on energy

homeostasis (Contreras et al. 2015, Lopez & Tena-Sempere

2015). One population consists of the POMC and CART

neurons, which provide a strong anorexigenic effect,

decreasing food intake and body weight. In contrast, the

second population of AgRP and NPY neurons has a potent

orexigenic effect, increasing food intake. Since the first

evidence demonstrating that brain-specific deletion of

insulin receptor (InsR) was associated with diet-sensitive

obesity (Bruning et al. 2000), many reports have tried to

identify the neurons and mechanism by which this

hormone affects the brain. In this context, the failure of

conditional depletion of JNK1 in several peripheral

insulin-sensitive tissues to recapitulate the phenotype of

whole-body JNK1 knockout mice (Sabio et al. 2008, 2009,

2010a,b) suggests the possibility that JNK1 activation in

the CNS might contribute to the maintenance of

energy balance and glucose metabolism. JNK activation

in hypothalamus during obesity has been linked

to endoplasmic reticulum stress, inflammation, and

hyperlipidaemia (Ozcan et al. 2004, Prada et al. 2005).

In 2010, two groups independently generated two brain-

specific conditional JNK1 knockout models (Belgardt et al.

2010, Sabio et al. 2010b) using the Nestin-cre system,

which is used to ablate a gene of interest in neurons and

astrocytes in the CNS (Tronche et al. 1999). Both

studies showed that these mice are protected against

HFD-induced obesity, insulin resistance and glucose

intolerance at the central and peripheral level (Belgardt

et al. 2010, Sabio et al. 2010b). Reduced body-weight

gain correlated with increased energy expenditure and

locomotor activity and a higher body temperature
Published by Bioscientifica Ltd.
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(Belgardt et al. 2010, Sabio et al. 2010b). Moreover, the

mice had depressed lipid accumulation in brown fat

and elevated plasma levels of T3 and T4 thyroid

hormones, which correlated with high levels of thyro-

tropin-releasing hormone (TRH) in hypothalamus. These

data indicate that JNK1 in CNS controls body homeostasis

by regulating the hypothalamic–pituitary–adrenal axis

(Belgardt et al. 2010, Sabio et al. 2010b). Two newly

generated mouse models are helping to further clarify the

role of JNK1 in the CNS: deletion of JNK1 and JNK2 in

pituitary gland and conditional overexpression of con-

stitutively active JNK in AgRP neurons (Vernia et al. 2013,

Tsaousidou et al. 2014). Vernia et al. found that lack of

JNK1 and 2 in the anterior pituitary gland protects against

weight gain during obesity and diabetes. Moreover, these

mice have elevated energy expenditure and circulating

levels of T3, T4 and thyroid stimulating hormone (TSH).

The study shows that JNK1/2 regulate expression of Dio2,

which encodes the enzyme responsible for T4 to T3

conversion in the pituitary gland. Impairment of this

conversion reduces the negative feedback regulation of

the expression of TSH, resulting in sustained production of

TSH, T3 and T4 (Vernia et al. 2013). In the second model,

mice expressing constitutively active JNK1 in AgRP

neurons become obese when fed a HFD and are leptin

resistant at the neuronal and systemic level (Tsaousidou

et al. 2014). These results indicate that JNKs, in particular

JNK1, play a pivotal role in central nervous control of

obesity. Further efforts are needed to address the role of

JNK3, a mainly CNS isoform, in metabolism and energy

homeostasis.
p38 MAPK

The four p38 MAPK isoforms – a, b, g, d – are encoded by

different genes and have different tissue expression

patterns (Sabio & Davis 2014). The p38a isoform is widely

expressed, but is less abundant in the brain, where p38b

MAPK is the major isoform (Beardmore et al. 2005). The

p38d isoform is highly expressed in a limited number of

tissues, including neutrophils and endocrine glands

(Sumara et al. 2009, Cuadrado & Nebreda 2010, Ittner

et al. 2012, Gonzalez-Teran et al. 2013), while p38g kinase

is expressed in all tissues, with high levels found in

muscle (Beardmore et al. 2005).

All p38 isoforms are activated, in response to

appropriate stimuli, by dual phosphorylation in the

activation loop sequence Thr-Gly-Tyr. p38 MAPKs can be

activated by MKK3, MKK4 or MKK6 in cell-free systems,

but their activation in intact cells is primarily mediated by
http://jme.endocrinology-journals.org � 2015 Society for Endocrinology
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MKK3 and MKK6 (Enslen et al. 2000, Brancho et al. 2003,

Remy et al. 2010). However, most of these studies were

performed in immortalized fibroblasts and how specific

p38 MAPK isoforms are activated in response to different

stimuli in other cells types is largely unknown. The

function of p38a has been studied in several physiological

processes, and although no specific role for this kinase has

been defined in metabolism, p38a is known to phosphory-

late several key proteins involved in glucose and lipid

metabolism (Fig. 3).
Liver

Although the specific role of the different p38 isoforms in

liver metabolism has not been studied, several p38 MAPK

substrates have been implicated in metabolic processes.

Here we summarize these substrates and current knowl-

edge about the potential action of p38 isoforms in liver

metabolism. Downstream targets of p38 include two

important transcription factors involved in gluconeo-

genesis: transcriptional PPAR gamma coactivator-1 alpha

(PGC1a) and CREB. Upon phosphorylation, PGC1a and

CREB activities are enhanced, and they bind to sites in the

promoter regions of the genes encoding phosphoenol-

pyruvate carboxykinase kinase (PEPCK) and glucose-6

phosphatase, activating transcription of these gluconeo-

genic genes (Deak et al. 1998, Puigserver et al. 2001, Cao

et al. 2005). Experiments with pharmacological inhibitors

and p38-targeting shRNA have suggested that p38 might

modulate gluconeogenesis via this mechanism (Cao et al.

2005). PGC1a also co-activates many other transcription

factors, including PPARa and FOXO1. Furthermore, p38

has been proposed to directly phosphorylate PPARa,

enhancing its activity (Juge-Aubry et al. 1999). p38 also

phosphorylates CCAAT-enhancer-binding protein alpha

(C/EBPa) (Qiao et al. 2006), a transcription factor that

regulates glucose homeostasis (Yang et al. 2005). Phos-

phorylation on serine enhances C/EBPa transactivation

activity and increases PEPCK gene expression (Qiao et al.

2006). A more recent study showed that p38 phosphory-

lates the spliced form of X-box binding protein 1 (Xbp1s),

promoting its nuclear translocation, reducing endoplas-

mic reticulum stress, and improving glycaemia during

obesity (Lee et al. 2011). All these studies point to a

potentially important role of p38 kinases as regulators

of glucose homeostasis in the liver. However, extensive

research in conditional knockout and transgenic mouse

models will be needed to define the function of each p38

isoform in liver homeostasis.
Published by Bioscientifica Ltd.

http://jme.endocrinology-journals.org/
http://dx.doi.org/10.1530/JME-15-0146


Liver

p38

Pancreas

Adipose tissue

Gluconeogenesis
β-oxidation

Glucose homeostasis
ER stress

C/EBPβ
ATF2

PGC1α

White and brown
adipose tissue
differentiation

TNFα
eEF2

PGC1
Creb

PPARα
C/EBPα
Xbp1s

PDK1

p38Δ controls insulin
secretion and β-cells

survival

p38γ /Δ controls
TNFα production,
inflammation and

immune cells migration

Bone marrow-derived cells

Figure 3

Roles of p38 isoforms in metabolism. p38 targets include several proteins

with a prominent role in metabolism regulation, such as TNFa, C/EBPb, and

PPARa, suggesting a role for these SAPKs in metabolism and metabolic

disease. Further studies in tissue-specific knockout mouse models are

needed to clarify the specific roles of each p38 isoform.
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Adipose tissue

Adipose tissue formation depends on tight regulation of

cell growth, proliferation and differentiation (Gehart et al.

2010). It has been proposed that p38 might modulate

adipocyte differentiation through the phosphorylation of

C/EBPb (Engelman et al. 1998), a key transcription factor

for adipose tissue differentiation (Tanaka et al. 1997).

In vitro experiments with p38a/b inhibitors have shown

that p38 phosphorylates and activates C/EBPb, enhancing

PPARg transcription and promoting adipocyte differen-

tiation. It also has been postulated that p38a regulates

brown adipose tissue differentiation by controlling uncou-

pling protein 1 (UCP1) expression levels through the

phosphorylation of the transcription factors ATF2 and

PGC1a (Cao et al. 2004, Tseng et al. 2008). However, more

experimental work is needed in knockout and con-

ditionally deficient animals in order to define the role of

p38 MAPK in adipose tissue in vivo.
http://jme.endocrinology-journals.org � 2015 Society for Endocrinology
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Pancreatic b cells

Although it has been speculated that p38a might promote

b cell failure, a part from in vitro inhibitor studies, there are

only a few supporting evidences (Gehart et al. 2010).

A very elegant recent study showed that p38d controls

insulin secretion through the phosphorylation and

inhibition of polycystic kidney disease 1 protein (PKD1)

(Sumara et al. 2009). PKD1 regulates insulin secretion and

cell survival, and mice lacking p38d are protected against

stress-induced b cell death and have elevated insulin

secretion.
Bone-marrow-derived cells

The p38 MAPK family regulates TNFa levels, a key

cytokine in the control of systemic inflammation.

While p38a regulates TNFa expression by controlling its

transcription and mRNA stability (Campbell et al. 2004,
Published by Bioscientifica Ltd.
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Kang et al. 2008), recent studies demonstrate key roles for

p38g and p38d in the posttranscriptional regulation of

TNFa biosynthesis, with myeloid-specific p38g/d gene

ablation triggering defects in TNFa production (Risco

et al. 2012, Gonzalez-Teran et al. 2013). Translational

elongation of nascent pro-TNFa protein is mediated by

eukaryotic elongation factor 2 (eEF2) kinase (Gonzalez-

Teran et al. 2013), which is inhibited by p38g/d-mediated

phosphorylation (Knebel et al. 2001). Neutrophils are an

important cell type that triggers inflammation and

monocyte migration (Nathan 2006) and that makes an

important contribution to liver steatosis development

and metabolic dysfunction (Talukdar et al. 2012, Bertola

et al. 2013, Mansuy-Aubert et al. 2013). p38g/d have

also been shown to control their recruitment and

mobility (Ittner et al. 2012, Gonzalez-Teran et al. 2013).

However, the specific contribution of these kinases to

chronic inflammation induced by metabolic disease has

not been tested.
Conclusions

Several reports have demonstrated that SAPKs control

several metabolic events and their excessive activation is

associated with deleterious effects during obesity. Most

of these studies have examined JNK family members, in

particular the isoforms JNK1 and JNK2. Further research is

needed to clarify the function of the different p38 isoforms

during obesity and in metabolic regulation and to define

the cell types in which these kinases perform their

function. The functions of p38g/d have not been studied

extensively in vivo, and very little is known about their

substrates and functions. Recent reports suggest that the

four isoforms of p38 have widely differing functions

(Sumara et al. 2009, Gehart et al. 2010, Sabio et al. 2010b,

Ittner et al. 2012, Gonzalez-Teran et al. 2013, Sabio & Davis

2014). Studies in knockout and conditionally deficient

mouse models for each p38 kinase are needed in order to

define the role of these proteins in health and disease.
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